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Abstract
Quantifying the fairness of a machine learning model has
recently received considerable attention in the research
community, and many quantitative fairness metrics have
been proposed. In parallel to this work on fairness, explain-
ing the outputs of a machine learning model has also re-
ceived considerable research attention. Here we connect
explainability methods with fairness measures and show
how recent explainability methods can enhance the useful-
ness of quantitative fairness metrics by decomposing them
among the model’s input features. Explaining quantitative
fairness metrics can reduce our tendency to rely on them
as opaque standards of fairness, and instead promote their
informed use as tools for understanding model behavior
between groups.
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Introduction
Quantitative fairness metrics seek to bring mathematical
precision to our definitions of fairness in machine learning
[2]. Definitions of fairness however are deeply rooted in hu-
man ethical principles, and so on value judgements that
often depend critically on the context in which a machine
learning model is being used. This dependence on value
judgements manifests itself in the mathematics of quantita-
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tive fairness measures as a set of trade-offs between some-
times mutually incompatible definitions of fairness [3]. Since
fairness relies on context-dependent value judgements it is
dangerous to treat quantitative fairness metrics as opaque
measures of fairness [1], since doing so may obscure im-
portant value judgment choices.

The danger of treating quantitative fairness metrics as
opaque, black-box measures of fairness is strikingly simi-
lar to a related problem of treating machine learning models
themselves as opaque, black-box predictors. While using a
black-box is reasonable in many cases, important problems
and assumptions can often be hidden (and hence ignored)
when users don’t understand the reasons behind a model’s
behavior [5]. In response to this problem many explainable
AI methods have been developed to help users understand
the behavior of modern complex models [6, 5, 4]. In this ar-
ticle we propose applying these explainable AI methods to
quantitative fairness metrics.

Applying Explainable AI Methods to Quantitative
Fairness Metrics
While there are many ways to explain the predictions of a
machine learning model, the most popular methods are
based on additive feature attribution [4, 5]. These meth-
ods explain the output of a model as a sum of effects at-
tributable to each input feature. If this decomposition is ex-
act then for a model f applied to a set of inputs x you can
represent the model output as a sum of feature impacts

f(x) = φ0(f) +

M∑
i

φi(f, x)

where φi(f, x) is the impact feature xi has on the model’s
output. Note that φ0(f) is a constant bias term that does
not depend on the current input x.

An important property of additive feature attribution meth-
ods is that they transfer the units of the model’s output
(such as log-odds or probabilities) onto the model inputs
(since the φi(f, x) terms have the same units as f(x)).
This means that any operation we previously would have
done once on the model output, we can now repeat M
times for each of the model’s inputs. Since quantitative fair-
ness metrics are computed by measuring expected differ-
ences in model outputs between specific groups of sam-
ples, we can also apply these metrics to the "partial model
outputs" represented by the attribution values φi(f, x). Do-
ing this effectively decomposes the quantitative fairness
metric into M different components that when added to-
gether reproduce the quantitative fairness metric as applied
to the original model output.

Decomposing a fairness metric among each of a model’s
inputs reveals which input features my be driving any ob-
served fairness disparities. Since users often have a much
better semantic understanding of model inputs than they do
of model outputs, a feature-level decomposition of fairness
that highlights a small number of features is much more ac-
tionable and useful than a single overall measure of model
fairness.

A Simulated Case Study on Explaining Statisti-
cally Parity
To demonstrate the usefulness of explaining quantitative
fairness metrics we consider a simple simulated scenario
based on credit underwriting. In the simulation there are
four underlying factors that drive the risk of default for a
loan: income stability, income amount, spending restraint,
and consistency. These underlying factors are not observed,
but they influence four different observable features in vari-
ous ways: job history, reported income, credit inquiries, and
late payments. Using this simulation we generate 10,000



random samples and then train a non-linear gradient boost-
ing tree classifier to predict the probability of default (the full
simulated setup is available online at tinyurl.com/wpffhhl).

By introducing sex-specific reporting errors into the simula-
tion we can observe how the biases caused by these errors
are captured by fairness metrics. For this analysis we use
the classic statistical parity metric, though the same analy-
sis works with other metrics.

As a baseline experiment we refrain from introducing any
sex-specific reporting errors. This results in no significant
statistical parity difference between the credit score of men
and women (Figure 1A top). When we decompose the sta-
tistical parity difference using the SHAP feature attribution
method [4] we also see no significant feature-level differ-
ences (Figure 1A bottom).

When we introduce an under-reporting bias for women’s
income into the simulation we see a moderately significant
statistical parity difference appear in the model’s output
(Figure 1B top). If this were a real application, this statistical
parity difference might trigger an in-depth analysis of the
model to determine what might be causing the disparity.
While this investigation is challenging given just a single
statistical parity difference value, it is much easier given the
per-feature statistical parity decomposition based on SHAP
(Figure 1B bottom), where there is a clearly significant bias
coming from the reported income feature.

If we instead introduce an under-reporting bias for women’s
late payment rates we again see a moderately significant
statistical parity difference for the model’s output (Figure 1C
top), and we now see a strong negative effect on women’s
default risk coming from the late payments feature (Fig-
ure 1C bottom).

Conclusion
Decomposing quantitative fairness metrics using explain-
able AI methods can reduce their opacity when the metrics
are driven by measurement biases effecting only a few fea-
tures. These "fairness explanations" enable users to better
wrestle with the underlying value judgements inherent in
fairness evaluation, and so may help reduce the risk of un-
intended consequences when using fairness metrics in real
world contexts.
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Figure 1: A simulation study on the effect of sex-specific reporting biases during credit scoring, and how SHAP values can be used
to explain the resulting statistical parity differences. (A) On top is the mean credit worthiness of both men and women as predicted by a
machine learning model. The difference between the two bar heights is the statistical parity difference (aka. demographic parity, one of the
most common quantitative fairness metrics). On the bottom is the statistical parity difference among the SHAP values for each input feature to
the model. The sum of the bars on the bottom equals the difference between the bars on the top. (B) The same analysis as done in (A), except
that now the income of women is under-reported in the simulated data. This causes a moderately statistically significant disparity in the model’s
output, and a huge disparity in the SHAP values for the reported income feature. (C) The same analysis as (B) except now the number of late
payments is under-reported for women (which causes the model to underestimate their risk).
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